9Th Class

> Molecules:

Definition:

- A molecule is the smallest unit of a chemical compound that retains the chemical properties of that compound.
- It consists of two or more atoms chemically bonded together.

Types of Molecules:

1. Molecular Compounds:

- These are compounds composed of molecules.
- The atoms in molecular compounds are held together by covalent bonds.
- Examples include water (H₂O), methane (CH₄), and carbon dioxide (CO₂).

2. Diatomic Molecules:

- Some elements naturally exist as diatomic molecules (molecules consisting of two atoms of the same element).
- Examples include oxygen (O₂), nitrogen (N₂), and hydrogen (H₂).

3. Polyatomic Molecules:

- Molecules containing more than two atoms of different elements are called polyatomic molecules.
- Examples include ozone (O₃) and sulfur hexafluoride (SF₀).

Chemical Formulas:

- A chemical formula is a symbolic representation of a chemical compound, indicating the type and number of each atom present in a molecule.
- 1. **Empirical Formula:**
 - Represents the simplest, most reduced ratio of elements in a compound.
 - For example, the empirical formula for hydrogen peroxide is HO.

2. Molecular Formula:

- Represents the actual number of atoms of each element in a molecule.
- Using hydrogen peroxide again, its molecular formula is H_2O_2 .

Bonding in Molecules:

1. Covalent Bonds:

- Covalent bonds involve the sharing of electrons between atoms.
- These bonds are common in molecular compounds.

2. **Ionic Bonds:**

- In ionic compounds, electrons are transferred from one atom to another, resulting in the formation of ions.
- The electrostatic attraction between oppositely charged ions forms the ionic bond.

Isomers:

• Isomers are molecules that have the same molecular formula but different structural arrangements of atoms.

1. Structural Isomers:

- Isomers with different structural arrangements of atoms.
- Example: Butane and isobutene.

2. Stereoisomers:

- Isomers with the same connectivity of atoms but different spatial arrangements.
- Includes cis-trans isomers and enantiomers.

Functional Groups:

• Functional groups are specific arrangements of atoms within molecules that determine their chemical properties.

1. Hydroxyl Group (-OH):

• Found in alcohols and sugars.

2. Carbonyl Group (C=O):

• Present in aldehydes and ketones.

3. Amino Group (-NH₂):

Characteristic of amines.