10Th Class

> MAGNETIC FIELD:

1. **Definition:**

• A magnetic field is a region around a magnet or a current-carrying conductor where magnetic forces are experienced.

2. Magnetic Field Lines:

- Magnetic field lines are imaginary lines used to represent the direction and strength of the magnetic field.
- They are drawn from the north pole to the south pole outside the magnet and from the south pole to the north pole inside the magnet.

3. Strength of Magnetic Field:

- The strength of the magnetic field is greater near the poles of the magnet and weaker farther away.
- The strength of the magnetic field is measured in teslas (T).

> PROPERTIES OF MAGNETIC FIELD LINES:

1. Continuous Loop:

• Magnetic field lines form closed loops. They do not start or end anywhere.

2. Density Indicates Strength:

- The density of magnetic field lines indicates the strength of the magnetic field.
- Closer lines indicate stronger fields, while sparser lines indicate weaker fields.

3. Direction:

- The direction of the magnetic field at any point is tangent to the magnetic field line at that point.
- Inside the magnet, the direction of the magnetic field lines is from south to north.

> MAGNETIC FIELD AROUND A CURRENT-CARRYING CONDUCTOR:

1. Right-Hand Rule:

- The direction of the magnetic field around a straight current-carrying conductor can be determined using the right-hand rule.
- Wrap the fingers of your right hand around the conductor in the direction of the current. Your thumb points in the direction of the magnetic field.

2. Magnetic Field Strength:

- The strength of the magnetic field around a current-carrying conductor depends on the magnitude of the current and the distance from the conductor.
- 3. Solenoid:

• A solenoid is a coil of wire wound in the form of a helix. When current passes through a solenoid, it produces a strong magnetic field inside the coil.

> APPLICATIONS OF MAGNETIC FIELDS:

1. Electromagnets:

- Electromagnets are temporary magnets produced by passing electric current through a coil of wire.
- They are used in various applications, including electric motors, generators, and magnetic resonance imaging (MRI) machines.

2. Magnetic Compass:

- A magnetic compass utilizes Earth's magnetic field to determine directions.
- The needle of a compass aligns itself with the Earth's magnetic field lines, pointing northsouth.

3. Magnetic Levitation (Maglev) Trains:

• Maglev trains use powerful magnetic fields to levitate and propel the train above the tracks, reducing friction and allowing for high-speed travel.

Understanding magnetic fields and magnetic field lines is essential for explaining the behavior of magnets, electromagnets, and various electromagnetic phenomena. These concepts have applications in a wide range of fields, including physics, engineering, and technology.